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39 Abstract

40 Microbially-explicit models may improve understanding and projections of carbon dynamics in response 

41 to future climate change, but their fidelity in simulating global-scale soil heterotrophic respiration (RH), a 

42 stringent test for soil biogeochemical models, has never been evaluated. We used statistical global RH 

43 products, as well as 7,821 daily site-scale RH measurements, to evaluate the spatio-temporal performance 

44 of one first-order decay model (CASA-CNP) and two microbially-explicit biogeochemical models 

45 (CORPSE and MIMICS) that were forced by two different input datasets. CORPSE and MIMICS did not 

46 provide any measurable performance improvement; instead, the models were highly sensitive to the input 

47 data used to drive them. Spatial variability in RH fluxes was generally well simulated except in the 

48 northern middle latitudes (~50°N) and arid regions; models captured the seasonal variability of RH well, 

49 but showed more divergence in tropic and arctic regions. Our results demonstrate that the next generation 

50 of biogeochemical models shows promise, but also needs to be improved for realistic spatio-temporal 

51 variability of RH. Finally, we emphasize the importance of net primary production, soil moisture, and soil 

52 temperature inputs, and that jointly evaluating soil models for their spatial (global scale) and temporal 

53 (site scale) performance provides crucial benchmarks for improving biogeochemical models.

54 1. Introduction
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55 The response of soil heterotrophic respiration (RH) to environmental change will largely determine 

56 whether soils are a carbon sink or source in the future (Bond-Lamberty et al., 2018). Despite the critical 

57 importance of microbes in driving this globally important carbon flux, current understanding of soil 

58 microbial communities and their potential responses to climate change is highly uncertain (Crowther et al., 

59 2019). Most biogeochemical models use a first-order decay process to describe soil carbon decomposition 

60 (Todd-Brown et al., 2012), meaning that biological factors such as the size and composition of the 

61 decomposer microbial community, interactions of organic matter with soil minerals and aggregates, 

62 adaptations of microbial physiology, and priming are ignored (Schmidt et al., 2011). This risks omitting 

63 crucial climatic feedback as the Earth system transitions to a novel and uncertain future (Wieder et al., 

64 2015a). 

65 New models seek to represent such potential biotic feedback to environmental change, but evaluation of 

66 their carbon cycle representation and performance is nascent (Wieder et al., 2015b). In recent years, many 

67 efforts have been made to include microbial biogeochemical mechanisms into a new generation of 

68 microbially-explicit models (Sulman et al., 2014, 2018; Wieder et al., 2014, 2015a, 2019). In theory, 

69 these models offer considerable advantages over first-order decay approaches in projecting future climate 

70 and carbon cycle feedback (e.g., they are capable of simulating population-driven dynamics independent 

71 of abiotic drivers). However, uncertainties in process representation and parameterization have led to 

72 divergent outcomes from different microbial-explicit models, leaving open questions of which if any 

73 model formulations improve predictive accuracy (Sulman et al., 2018). 

74 Evaluating global-scale soil biogeochemical models is challenging, given the lack of appropriate datasets 

75 that can serve as model benchmarks (Koven et al., 2017; Collier et al., 2018; Shi et al., 2020). Wieder et 

76 al. (2018, 2019) developed a biogeochemical testbed to compare the performance of a first-order model, 

77 Carnegie-Ames-Stanford Approach (CASA-CNP) (Potter et al., 1993; Randerson & Thompson, 1996; 

78 Wang et al., 2010) vs. two microbially-explicit models, including MIcrobial-MIneral Carbon Stabilization 

79 (MIMICS) (Wieder et al., 2014, 2015a), and Carbon, Organisms, Rhizosphere, and Protection in the Soil 

80 Environment (CORPSE) (Sulman et al., 2014, 2017). Such a testbed provides a consistent environment 

81 for evaluating different models, similar to e.g. International Land Model Benchmarking (ILAMB) 

82 (Collier et al., 2018). This work showed that different models lead to divergent SOC predictions with a 

83 distinct signature of heterotrophic respiration fluxes (Basile et al., 2020; Wieder et al., 2019). 

84 Model performance needs to be evaluated by actual data. Wieder et al. (2013) and Wieder et al. (2015a) 

85 compared carbon storage simulation from testbed models vs. Harmonized world soil database (HWSD) 

86 carbon storage to evaluate the model performance. Basile et al. (2019) showed that spatial and temporal 
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87 variations in atmospheric CO2 could be used to benchmark biogeochemical models. Predicting carbon 

88 fluxes constitutes an equally and perhaps more stringent test for models, compared with projecting SOC 

89 stocks or atmospheric CO2 (Todd-Brown et al., 2012, 2013). Heterotrophic respiration (RH) is a direct 

90 consequence of microbial activities, and therefore accurately simulating RH is a key metric of model 

91 performance, but RH simulations from microbially-explicit models have never been compared with 

92 observational benchmarks at global scale. Emerging global soil respiration (RS) databases provide an 

93 opportunity to evaluate models across different conditions based on in situ observations. Bond-Lamberty 

94 et al. (2010) and Jian et al. (2020) compiled published annual RS (which also includes estimates of annual 

95 RH) into a global RS database (SRDB). Based on the SRDB, Jian et al. (2018) further compiled the daily 

96 and monthly RS (which also includes RH measurements) into a global daily RS database (DGRsD), 

97 through which 7,821 daily RH field measurements are available for model performance evaluation. 

98 Meanwhile, new global RH datasets have been developed (Hashimoto et al., 2015; Warner et al., 2019; 

99 Tang et al., 2020). Such field measurements and data-driven statistical RH data products (Hashimoto et al., 

100 2015; Warner et al., 2019; Tang et al., 2020) offer promising opportunities to validate both existing first-

101 order and new microbially-explicit models’ performance at site, regional, and global scales. 

102 The objectives of this study are to: 1) evaluate differences between CASA-CNP, CORPSE, and MIMICS 

103 models’ predictions and observational benchmarks at multiple spatial scales; 2) investigate whether 

104 microbially-explicit models (CORPSE and MIMICS) outperform the first-order model (CASA-CNP); and 

105 3) explore the main reasons causing RH mismatch between models and benchmarks. We analyzed RH 

106 simulations from CASA-CNP, CORPSE, and MIMICS with three global RH data products derived from 

107 statistical models and 7,821 daily site-scale RH observations from DGRsD as benchmarks (Figure 1 and 

108 Figure 2). 

109 2. Methods

110 Previous studies have identified the importance of climate forcing in generating carbon cycle uncertainty 

111 (Todd-Brown et al., 2013). In this study, we further examine the role of climate forcing in generating RH 

112 uncertainty. The biogeochemical testbed is driven by external forcings that include gross primary 

113 productivity, soil and air temperature, and soil moisture (Wieder et al., 2018). We generated these inputs 

114 from simulations with the Community Land Model, versions 4.5 (Oleson et al., 2010) and 5.0 (Lawrence 

115 et al., 2019). The simulations were run in satellite phenology mode with the default climate reanalysis for 

116 each model version: CLM4.5 uses atmospheric forcing data from National Centers for Environmental 

117 Prediction and Climatic Research Unit (CLM4.5-CRUNCEP), and CLM5.0 uses the Global Soil Wetness 

118 Project Phase 3 (CLM5.0-GSWP3). Although this approach complicates attributing differences in input 
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119 data to differences in model versions vs. climate forcings, previous work suggests that these combinations 

120 provide the most realistic soil temperatures, especially at high latitudes (Bonan et al. 2019; Lawrence et al. 

121 2019). This study used the forcing data from CLM as boundary conditions to drive the CASA vegetation 

122 model, which generated net primary production (NPP) that was partitioned into different plant tissues and 

123 litterfall that drive the accumulation and decomposition of soil C stock simulated by CASA-CNP, 

124 MIMICS and CORPSE. We then compared the RH fluxes simulated by the models to examine the RH 

125 simulation uncertainty related to different forcing data (Figure 2).

126 Heterotrophic respiration (RH) data from a biogeochemical testbed, statistical global RH datasets, as well 

127 as daily timescale field RH measurements were used in this study. For the biogeochemical testbed, the 

128 CASA-CNP, CORPSE, and MIMICS models were driven by the inputs from the Community Land Model 

129 (CLM, versions 4.5 and 5.0). These two versions of CLM were parameterized with different forcing 

130 datasets: CLM4.5 uses atmospheric reanalysis from Climatic Research Unit of National Centers for 

131 Environmental Prediction (CRUNCEP) for the period 1901-2010 (Wieder et al., 2018); while CLM5.0 

132 uses climate reanalysis from the Global Soil Wetness Project Phase 3 (GSWP3) for the period 1901-2014 

133 (Dirmeyer et al., 2006; Yoshimura & Kanamitsu, 2013). Daily modeled GPP, air and soil temperature, 

134 and soil moisture were used to drive the CASA vegetation model, which generated NPP and partitioning 

135 into different plant tissues and litterfall. Thus, the soil models experienced identical environmental drivers, 

136 when forced by CLM4.5-CRUNCEP and CLM5.0-GSWP3 inputs, respectively. This experimental design 

137 affords opportunities to evaluate uncertainties in external forcings (CLM4.5-CRUNCEP vs. CLM5.0-

138 GSWP3 forced simulations). It also allows us to isolate the effects of model structural uncertainty among 

139 CASA-CNP, MIMICS, and CORPSE soil model formulations. This ensures that simulated RH differences 

140 from those three models are caused by the microbial processes (first-order decay vs. microbially-explicit) 

141 and parametric differences between the models. 

142 An exhaustive description of differences in the strengths and weaknesses of different versions of CLM is 

143 outside the scope of this paper. Lawrence et al. (2019) documented significant improvements in CLM5.0, 

144 relative to previous versions of the model. Notable improvements include reduced biases in gross primary 

145 productivity (especially across mid- and high-latitude ecosystems), improved representation of permafrost 

146 extent, and better agreement with observed terrestrial water storage anomalies. Similarly, Lawrence et al. 

147 (2019) reported better agreement with model benchmarks for air temperature, precipitation, and solar 

148 radiation for CLM simulations forced with GSWP3, compared to CRUNCEP forced runs. Thus, we 

149 assumed the improvements from these data to the testbed models will carry forward to our RH results. 

https://paperpile.com/c/WiSJVb/cy3t
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150 The details regarding the microbial processes in CASA-CNP, CORPSE, and MIMICS can be found at 

151 (Potter et al., 1993; Randerson & Thompson, 1996; Wang et al., 2010; Wieder et al., 2013, 2014, 2015a, 

152 2018; Sulman et al., 2014, 2017), but we briefly described here: the CASA-CNP used first-order, linear 

153 decay rates modified by soil temperature and soil moisture to simulate microbial RH that are proportional 

154 to soil organic matter pools (Potter et al., 1993; Randerson & Thompson, 1996; Wang et al., 2010); 

155 MIMICS was designed to evaluate the interactions of microbial physiology and soil properties 

156 (specifically soil texture) in moderating patterns of soil carbon persistence across large eco-climatological 

157 gradients (Wieder et al., 2014, 2015a). MIMICS uses a temperature-sensitive reverse Michaelis-Menten 

158 kinetics to explicitly represent microbial activity that is moderated by substrate availability, soil 

159 temperature, and the availability of liquid soil water (Wieder et al., 2014, 2015b). MIMICS simulates the 

160 activity of two microbial biomass communities that are characterized by having either rapid growth rate 

161 and low growth efficiencies or slow growth rates and higher growth efficiencies. The turnover of these 

162 microbial biomass pools are subject to density dependent microbial mortality rates as well as 

163 environmental conditions. CORPSE was developed to examine the priming (increased carbon inputs due 

164 to atmospheric CO2 fertilization may accelerate old carbon decomposition) and protection (increased 

165 carbon inputs are protected through interactions with mineral particles) responses of SOC to rising 

166 atmospheric CO2 (Sulman et al., 2014). CORPSE also explicitly represents microbial activity and uses 

167 modified Michaelis-Menten kinetics that are sensitive to substrate availability, soil temperature and liquid 

168 water availability. CORPSE only represents a single microbial biomass pool and uses a fixed microbial 

169 mortality rate (Sulman et al., 2014, 2017; Georgiou et al., 2017). In these simulations MIMICS and 

170 CORPSE use the same function to modify soil C turnover based on liquid water availability (Sulman et 

171 al., 2014). 

172 Global RH data products were used to evaluate the performance of microbially-explicit models. There are 

173 three global field-measurements-driven statistical RH data products available, and all these RH data 

174 products were developed based on the same global RS database (SRDB, version 3) (Bond-Lamberty & 

175 Thomson, 2010) but used different modelling approaches. The first global RH data product 

176 (http://cse.ffpri.affrc.go.jp/shojih/data/index.html) was developed using a Metropolis–Hastings algorithm 

177 to parameterize the relationship between RS and climate factors (air temperature and precipitation) at the 

178 site-level. Specifically, this algorithm was used to up-scale RS from site to globe between 1965 and 2012 

179 at 0.5 ° × 0.5 ° spatial resolution (Hashimoto et al., 2015). RH was then calculated based on the 

180 relationship between RH and RS [ln (RH) = 1.22 + 0.73 ln (RS)] from a global meta-analysis (Bond-

181 Lamberty et al., 2004). As  confidence interval (CI) of RH was not directly reported, we calculated it 

182 based on the CI of global soil respiration (RS) and its CI based on Hashimoto et al.(2015), i.e., CI(RH ) = 
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183 4 × . The second RH product (https://doi.org/10.6084/m9.figshare.8882567) was developed using a 
51

91

184 random forest machine learning approach. Based on the third version of SRDB together with a RH data 

185 search, 504 annual RH observations were used to train the relationship between RH and 9 environmental 

186 factors (including mean annual temperature, mean annual precipitation, diurnal temperature range, 

187 nitrogen deposition, Palmer Drought Severity Index, shortwave radiation, soil carbon content, soil 

188 nitrogen content, and soil water content) based on the random forest modelling approach. Then global 

189 annual RH and related CI between 1980 and 2016 were predicted at 0.5 ° × 0.5 ° spatial resolution (Tang 

190 et al., 2020). The third global RH data product 

191 (https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html) was developed using a quantile 

192 regression forest modelling approach. Specifically, field data was used to train the relationship between 

193 RS and four environmental factors (mean annual temperature, mean annual precipitation, enhanced 

194 vegetation index, and mean winter precipitation) (Warner et al., 2019), and mean annual RH was then 

195 predicted at 1 km spatial resolution based on the RH and RS relationship [ln (RH) = 1.22 + 0.73 ln (RS)]. 

196 Warner et al. (2019) did not report CI, so we first calculated CI of RS pixels (generated as CI of the mean 

197 of all random forest "trees" predictions at each pixel, was 4.7 Pg), and then calculated CI (RH ) = 4.7 × 

198 .
49.8

87.9

199 Daily RH measurements at the site scale were collected to evaluate the seasonal performance of 

200 microbially-explicit models at finer time and spatial scales. We went through the studies in SRDB which 

201 reported annual RH measurements (red crosses in Figure 1), and checked whether detailed daily RH 

202 measurements were reported; we then compiled these daily RH measurements into DGRsD. In total 7,821 

203 daily RH observations from 254 studies were obtained (Figure 1, blue circles). We used latitude, longitude, 

204 year, and day of year to link these DGRsD data with the models’ RH outputs and thus obtain modeled RH 

205 for all the observational sites and sampling times. Note that the spatial resolution of CASA-CNP, 

206 CORPSE, and MIMICS is 2.0° latitude × 2.5° longitude, meaning an inevitable spatial mismatch as we 

207 thus compare site-specific observations with grid cell-scale model outputs (Shao et al., 2013). In addition, 

208 the CASA-CNP, CORPSE, and MIMICS runs ended in 2010 and 2014 (for CLM4.5-CRUNCEP and 

209 CLM5.0-GSWP3 forced simulations, respectively) but observational data for some sites were as late as 

210 2017. In these cases, we used the 2000-2010 (when driven by CLM4.5-CRUNCEP) and 2000-2014 

211 (when driven by CLM5.0-GSWP3) model average of a 3-day window around the observational date; for 

212 example, an RH value measured on June-20th 2015 would be linked with the modeled RH between June-

213 17th and June-23th, averaged over the 2000-2010 period (CLM4.5-CRUNCEP forcing) or 2000-2014 

214 period (CLM5.0-GSWP3 forcing). We did this because our focus was not on evaluating model 

215 performance at the daily scale, but rather the correctness of its overall seasonality. We then calculated 

https://doi.org/10.6084/m9.figshare.8882567
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216 mean RH (measured RH as well as predicted RH by CASACNP, MIMICS, and CORPSE) and their 

217 confidence interval (CI, within a specific group, CI = tscore × standard error) by day of year within six 

218 climate regions (Tropic, Arid, Temperate, Mediterranean, Boreal, and Arctic) to analyze models also 

219 reasonably capture the seasonal pattern of RH in different climates.

220 Global scale RH fluxes between 1980 and 2010 for CLM4.5-CRUNCEP, between 1980 and 2014 for 

221 CLM5.0-GSWP3 from the biogeochemical models (CASA-CNP, CORPSE, and MIMICS models) were 

222 compared with that from the global RH statistical products as well as daily RH measurements collected 

223 from 254 studies (Figure 1). Specifically, we investigated whether biogeochemical models can predict the 

224 magnitude and trend of global annual RH under global climate change (Figure 2). Global annual RH were 

225 summed up based on RH rate and the area of each cell. We calculated global annual RH between 1980 and 

226 2016 when possible. We then compared RH latitudinal patterns from the biogeochemical models vs. that 

227 from the global RH data to investigate whether biogeochemical models well capture the RH spatial 

228 variability. The spatial resolution of biogeochemical models and the global RH data varied from 0.5 to 

229 2.5 °, therefore, we averaged RH rate by every 5 ° along the latitude gradient. Mean RH rates along each 

230 latitude were then compared. We also compared NPP outputs from the CASA-CNP model vs. MODIS 

231 NPP (https://code.earthengine.google.com/) (Zhao et al., 2005) to evaluate whether the difference 

232 between modeled RH and benchmark RH is related to the NPP inputs bias. 

233 Site scale daily RH vs. the prediction from the biogeochemical models was compared to investigate 

234 whether microbially-explicit models well predict daily and site scale RH. Based on the latitude, longitude, 

235 and time information, we retrieved the RH predictions from the three biogeochemical models. Linear 

236 regression was used to analyze the linear relationship between measured RH and model predicted RH. The 

237 raw data do not follow a normal distribution and thus it is difficult to compare the difference between 

238 measured RH and modeled RH. We thus used a bootstrap resampling approach to sample the mean of RH 

239 from both measured and modeled RH 10,000 times, and a non-parametric Wilcoxon test was then used to 

240 test whether modeled RH were different from the measured RH. 

241 We further used the Wilcoxon test to compare the modeled RH vs. measured RH. From DGRsD, there are 

242 254 studies with more than 5 RH observations, for each study, we applied a non-parametric Wilcoxon test 

243 to investigate whether modeled RH significantly differs from measured RH. Based on the Wilcoxon-test p 

244 value and mean error (ME, i.e., mean of modeled RH - measured RH in each study, equation 1), all sites 

245 could be separated into three groups: overestimated (p ≤ 0.05 and ME > 0), underestimated (p ≤ 0.05 and 

246 ME < 0), and well estimated (p ≥ 0.05). 

https://code.earthengine.google.com/
https://paperpile.com/c/WiSJVb/yLl4
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247             [1]�� =
��� = 1(��― ��)�

248 where  represents the ith predicted RH value and  represents the ith measured RH value (Yang et al., �� ��
249 2014). 

250 To investigate whether the RH differences between models and benchmarks are related with model NPP 

251 inputs, we collected the MODIS NPP data from 2000-2019 using the platform of Google Earth Engine 

252 (https://code.earthengine.google.com/). Specifically, we used the MOD17A2H V6 NPP product, which 

253 has a 8-day temporal resolution and 500m spatial resolution (Zhao et al., 2005). We further calculated the 

254 annual mean value and latitude gradient of MODIS NPP. We collected the NEE data covering 2001-2015 

255 from the FLUXCOM project, which aims to upscale biosphere-atmosphere fluxes from local FLUXNET 

256 sites to continental and global scales (Tramontana et al., 2016; Jung et al., 2019). Here we used the 

257 monthly 0.5° latitude × 0.5° longitude FLUXCOM data with the setup of remote sensing to derive the 

258 annual mean values of NEE globally.

259 3. Results

260 Global annual RH from CASA-CNP, CORPSE, and MIMICS driven by CLM4.5-CRUNCEP (51.0 Pg C 

261 yr-1, all annual RH from three models averaged, Figure 3a) forcing is in the range of that from statistical 

262 models (47.2 - 58.9 Pg C yr-1, Figure 3a) (Hashimoto et al., 2015; Warner et al., 2019; Tang et al., 2020). 

263 Latitudinally, RH from CASA-CNP, CORPSE, and MIMICS match well with RH from the statistical 

264 models, but exhibited a mismatch in the northern mid-latitudes and arid regions (Figure 3b). However, 

265 global annual RH from CASA-CNP, CORPSE, and MIMICS driven by CLM5.0-GSWP3 (43 Pg C yr-1, 

266 all annual RH from three models averaged, Figure 3a) forcing is lower than that from statistical models 

267 (47.2 - 58.9 Pg C yr-1). Differences in the global sum of RH fluxes (Figure 3a) reflect higher net primary 

268 productivity with the CLM4.5 CRU-NCEP forced simulations, relative to the CLM5.0-GSWP3 forced 

269 simulations (Figure 3c). The spatial distribution of the fluxes, however, suggest that CRU-NCEP forced 

270 simulations have larger C fluxes in mid- to high latitudes (centered around 50 degrees N), which do not 

271 agree with upscaled RH observations (Figure 3b and Figure 4). 

272 In the site-scale comparison, when driven by CLM4.5-CRUNCEP, we found that for most of the sites, 

273 model-simulated RH is higher than the field measured RH (Figure 4). A non-parametric Wilcoxon test 

274 shows that within 254 studies we investigated, CASA-CNP, CORPSE, and MIMICS driven by CLM4.5-

275 CRUNCEP forcing overestimated RH for 169 sites (66%), underestimated RH for 65 sites (26%), and only 

276 simulated RH well for 8% of sites (Figure 4b). When driven by CLM5.0-GSWP3 forcing, the model 
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277 performance improved, as Root Mean Square Error (RMSE) decreased when compared with the results 

278 driven by CRUNCEP (Figure S4). In addition, CASA-CNP, CORPSE, and MIMICS overestimated RH 

279 for 128 sites (50%), underestimated RH for 96 sites (38%), and simulated RH well for the remaining 30 

280 (12%) sites (Figure 4e). The spatial pattern of RH differences between CASA-CNP (averaged between 

281 2000 and 2010) and Warner et al. (2019) showed that CASA-CNP overestimated RH in northern middle 

282 latitudes (Figure 4a). This problem was largely resolved when using GSWP3 to drive the model runs 

283 (Figure 4d), however, model predicted RH were still slightly higher than the measured RH (Figure 5). The 

284 spatial patterns of RH from Hashimoto et al. (2015) and Tang et al. (2020) were almost identical to 

285 Warner et al. (2019) (Figure S1). A similar conclusion could be obtained by comparing the distribution of 

286 RH simulations of CASA-CNP, CORPSE, and MIMICS with daily time scale RH measurements from 

287 individual sites (Figure 5).

288 When simulated RH were compared with measured RH by month and climate region, we found large 

289 disagreements in most months and climate regions (Figure S2). A linear regression analysis (n=7,821) 

290 showed that RH simulations from MIMICS driven by CLM5.0-GSWP3 were weakly correlated with the 

291 field observations (R2 = 0.11); comparable percentages of variance explained for CASA-CNP and 

292 CORPSE were 10.0% and 4.0%, respectively (Figure S3). The low correlation between field RH 

293 measurements and modeled RH may result from the coarse spatial resolution of the testbed results (~ 2.0° 

294 latitude × 2.5° longitude), and they are compared to site-level (typically 0.1-1.0 km2) measurements.

295 The process models reasonably capture the seasonal pattern of RH (Figure S5), but show differences when 

296 separated into six climate regions, all models performance well in temperate (R2 > 0.40) and boreal (R2 > 

297 0.50), but not for other climate regions (R2 < 0.20, Figure 6). The seasonal pattern of modeled RH was 

298 also improved when driven by CLM5.0-GSWP3, especially in tropic and boreal regions (Figure 6). In 

299 general, MIMICS captures the RH seasonal variability slightly better compared with CORPSE, but similar 

300 as CASA-CNP (Figure 6). However, MIMICS simulated RH seems to have a later peak in the fall, 

301 inconsistent with observations (Figure 6), a finding consistent with Basile et al. (2020). In the tropics, the 

302 process models were unable to capture the large temporal amplitude of RH (Figure 6). Similarly, in the 

303 arctic, measured RH showed a clear peak in the growing season, but models fail to capture this pattern. 

304 4. Discussion

305 Biases in simulated RH fluxes are strongly influenced by potential biases in plant productivity simulated 

306 in the testbed models. The spatial distribution of RH differences (biases, calculated as CASA-CNP 

307 modeled RH - observed RH) showed a similar spatial pattern as the differences between CASA-CNP 

308 modeled NPP and Moderate Resolution Imaging Spectroradiometer (MODIS) NPP (NPP differences, 
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309 Figure 4c and 4f). Specifically, large positive biases in simulated RH fluxes from the CLM4.5-CRUNCEP 

310 forced simulations occurred in mid latitudes (~ 50° N) where we also found positive biases in simulated 

311 NPP, compared with MODIS estimates. These productivity biases were reduced in the CLM5.0-GSWP3 

312 forced simulations, leading to an improvement in simulated RH as well. 

313 However, NPP inputs alone cannot explain the process models’ overestimation of RH. For example, 

314 underestimated RH were mostly observed at central Australia and Tibet Plateau (Figure 4a, 4b, and Figure 

315 S1a), but CASA-CNP modeled NPP showed no differences compared with the MODIS NPP there (Figure 

316 3c, Figure 4c and 4f). One possibility is that the autotrophic and heterotrophic carbon fluxes simulated by 

317 the land models will largely balance out, but observationally derived data products of NPP and RH are not 

318 necessarily internally consistent with each other. Indeed, the Net Ecosystem Exchange (NEE) that would 

319 be derived from the difference between observationally based NPP and RH estimates would produce large 

320 carbon sinks across the tropics and middle latitudes according to the FLUXCOM NEE products 

321 (Tramontana et al., 2016; Jung et al., 2019), but this carbon sink is poorly captured by these simulations 

322 (Figure 3d). 

323 When using GSWP3 as model forcing, the site scale daily RH comparison showed that simulated RH from 

324 CASA-CNP, CORPSE, and MIMICS are much closer to the measured RH, while annual RH from model 

325 results from CLM5.0-GSWP3 forcing (43 Pg C yr-1, Figure 3a) are lower than the statistical benchmarks 

326 (47.2 - 58.9 Pg C yr-1) (Hashimoto et al., 2015; Warner et al., 2019; Tang et al., 2020),  What might cause 

327 these discrepancies? First, we recognize that gridded statistical estimates of RH fluxes are themselves 

328 uncertain. For example, lower global RH has been reported by calculating RH from satellite-driven 

329 estimates (global RH = 43.6 ± 19.3 Pg C yr-1; mean ± SD) (Konings et al., 2019) and by a comprehensive 

330 global bottom-up carbon budget accounting (global RH = 39 ± 6 Pg C yr-1) (Ciais et al., 2020) compared 

331 with the estimates from statistical models shown in Figure 3 (Hashimoto et al., 2015; Warner et al., 2019; 

332 Tang et al., 2020). Second, Jian et al., (2018a) suggests that RS sites’ uneven distribution from the global 

333 RS database causes about 6 Pg C overestimate of global annual RS. Finally, Jian et al., (2018b) also 

334 posited that the temporal variability of soil respiration plays an important role on global soil respiration 

335 modeling and estimates, with global soil respiration prediction based on monthly soil respiration data 

336 about 10 Pg C smaller than that based on annual data. This suggests that the mismatch between modeled 

337 RH (driven by GSWP3 forcing) and benchmarks may be related to RS sites spatial uneven distribution and 

338 temporal variability in RH fluxes. 

339 Another potential source of bias in the models, compared to observationally extrapolated RH fluxes, is that 

340 the modeled ratio of RH to NPP in the biogeochemical models is too high. The value of RH to NPP ratio 
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341 reported by the IPCC assessment report is 0.9 (Stocker et al., 2013), and in testbed models this ratio is 

342 almost 1 (i.e., NEE values are very close to 0, Figure 3d). RH to NPP ratio estimates from IPCC and 

343 testbed models, however, may be too high because the models generally do not consider dissolved and 

344 particulate organic carbon losses to rivers and erosion (Cole et al., 2007; Tan et al., 2020), crop harvest 

345 and grazing (Guenther et al., 2012; Ciais et al., 2020), or carbon emission due to fire (Werf et al., 2017). 

346 As a result, Tan et al. (Tan et al., 2020) suggested that too much carbon is transferred to soils in the 

347 models compared to reality, which results in a higher RH to NPP ratios. This suggests that the associated 

348 turnover time (and thus CO2 emissions) of soil C pools may be more uncertain than currently thought 

349 (Carvalhais et al., 2014). 

350 Alternatively, higher RH estimates from biogeochemical models could be due to model parameterizations 

351 with too-low carbon use efficiency (relative to transfers among soil C pools) (Geyer et al., 2016). 

352 Microbially-explicit models advance the representation of SOC dynamics and turnover under global 

353 climate change, but parameterizing them remains an outstanding challenge (Wieder et al., 2015b, 2018; 

354 Bradford et al., 2016). The field observations compiled in this study can be used to constrain the model 

355 parameters for the next generation model improvement. Similarly, Zhang et al. (2020) used data from 72 

356 sites in Europe and 134 sites in China to calibrate the parameter for SOC deprotection rate, improving the 

357 performance of MIMICS. The key parameters related to SOC decomposition in the default CORPSE and 

358 MIMICS (such as the microbial temperature sensitivity and microbial mortality rate) were parameterized 

359 using laboratory (German et al., 2012) and field data (Wieder et al., 2013, 2014, 2015b), but increasing 

360 field data collected from different environments across the globe should improve these models’ 

361 performance. This also emphasizes the need to collect relevant environmental covariates, especially soil 

362 temperature and soil moisture data, as well as site level data on plant productivity and soil characteristics 

363 from field RS studies. 

364 Such model benchmarking, evaluation, and diagnosis exercises are most powerful–provide the most 

365 scientific benefit–when performed using high spatio-temporal resolution global RH data products (Collier 

366 et al., 2018). Currently, there are three global observation-driven statistical RH data products available, 

367 but each was developed from the same underlying global RS database (SRDB, version 3) (Bond-Lamberty 

368 & Thomson, 2010), reducing their independence and thus benefit for benchmarking. In addition, currently 

369 global RH estimates are available only on annual timescales. Nonetheless, incorporating these 

370 observations into benchmarking packages such as ILAMB (Collier et al., 2018) will provide useful tests 

371 to evaluate the representation of soil biogeochemistry in land models. Higher frequency daily and 

372 monthly RH fluxes are likely necessary to understand and evaluate the different sensitivities in soil 

373 biogeochemical models, sub-annual biases and transient processes that produce hot spots and hot 
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374 moments (Bernhardt et al., 2017), and the distribution and occurrence of extreme values across temporal 

375 and spatial scales. 

376 Conclusion

377 Microbially-based soil models likely hold the key to predicting 21st-century soil carbon climate feedback 

378 accurately, but their development and evaluation remains a challenge. This study is the first to evaluate 

379 such models’ heterotrophic respiration fluxes against observed RH at both local and global scales. The 

380 three biogeochemical models we evaluated (the first-order land model CASA-CNP, and the microbial 

381 CORPSE and MIMICS models) reasonably simulate annual RH and its spatio-temporal variability 

382 compared to three data-driven statistical global RH data products and site-scale daily measurements. The 

383 forcing dataset CLM5.0-GSWP3 provided significantly improved results compared to CLM4.5-

384 CRUNCEP. The spatial variability of RH from the biogeochemical models is highly affected by the model 

385 NPP and litterfall inputs, and all models exhibited temporal biases at the site scale. We conclude that (i) it 

386 is important to improve NPP and litterfall (i.e., the carbon inputs to soil heterotrophs) in the next 

387 generation of biogeochemical models; (ii) joint evaluations of models at multiple spatial and temporal 

388 scales provides a stringent test of their performance; and (iii)  microbial models’ performance, at least in 

389 the group examined here, is already at least as good as traditional first-order alternatives, high temporal- 

390 and spatial-resolution datasets will be key to evaluating and improving these models in the future.
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410 Figure caption

411 Figure 1. Geographic distribution of  heterotrophic respiration (RH) sites from the daily global soil 

412 respiration (RS) database (DGRsD, daily RH collected from 254 individual articles, show as blue circles) 

413 (Jian et al., 2018) and a global RS database (SRDB, red crosses) (Bond-Lamberty & Thomson, 2010); 

414 Three global RH datasets (Hashimoto et al., 2015; Warner et al., 2019; Tang et al., 2020) were developed 

415 based on annual RS or RH measurements. Point sizes represent the number of observations in each 

416 location (unique latitude and longitude).

417

418 Figure 2. Diagram shows the workflow of this study. Data driven statistical global RH products 

419 (Hashimoto et al., 2015; Warner et al., 2019; Tang et al., 2020) and filed RH measurements collected 

420 from articles were used as the benchmarks for the biogeochemical models (CASA-CNP, CORPSE, and 

421 MIMICS) in this study. We compared the spatio-temporal variability of RH to evaluate the performance of 

422 biogeochemical models. Net Primary Production (NPP) and Net Primary Exchange (NEE) from 

423 Moderate Resolution Imaging Spectroradiometer (MODIS) (Zhao et al., 2005) and FLUXCOM 

424 (Tramontana et al., 2016; Jung et al., 2019) are used to investigate whether the RH differences between 

425 models and benchmarks are related with model NPP inputs.

426

427 Figure 3. (a) Comparison of global annual mean heterotrophic respiration (RH) predicted by data driven 

428 statistical models (benchmark) (Hashimoto et al., 2015; Warner et al., 2019; Tang et al., 2020) and 

429 biogeochemical models (CASA, CORPSE, and MIMICS forced by CLM4.5-CRUNCEP and CLM5.0-

430 GSWP3). The shaded area showed the confidence interval (CI) of RH. (b) Zonal mean RH (mean rate: g C 

431 m-2 yr-1) along latitude, RH predicted by Warner et al., (2019) is used as a benchmark, RH simulated by 

432 CASA-CNP using CLM4.5-CRUNCEP and CLM5.0-GSWP3 forcings are compared with the benchmark 

433 (within a specific zonal band, e.g., 85° - 90°, CI of (Warner et al., 2019) was calculated according to CI = 

434 tscore × standard error, CI of NPP and NEE benchmarks were calculated similarly); (c) Zonal mean Net 

435 Primary Production (NPP) fluxes with latitude (mean rate between 1980 and 2010: g C m-2 yr-1), NPP 

436 (with CI) from MODIS is showed as the benchmark. (d) Zonal mean Net Ecosystem Exchange (NEE) 

437 with latitude (mean rate between 1980 and 2010: g C m-2 yr-1, NEE = RH - NPP for simulations), NEE 

438 (with CI) from FLUXCOM (Tramontana et al., 2016; Jung et al., 2019) is showed as the benchmark. 

439 Note that CI of MODIS NPP and FLUXCOM NEE are also shown in panel c and d, but they are too 

440 small to see clearly.
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441

442 Figure 4. (a) Global spatial distribution of soil heterotrophic respiration (RH) differences between CASA-

443 CNP (driven by CLM4.5-CRUNCEP forcing) and data-driven statistical model result from ref (Warner et 

444 al., 2019); (b) RH differences between CASA-CNP (driven by CLM4.5-CRUNCEP forcing) and daily 

445 measured RH from 254 studies. (c) NPP differences between CASA-CNP model and MODIS data. (d, e, 

446 and f) similar as a, b, and c, but CASA-CNP was driven by CLM5.0-GSWP3 forcing. 

447

448 Figure 5. Distributions of bootstrap resampled measured daily RH and daily RH predicted from CASA-

449 CNP, CORPSE, and MIMICS models driven by CLM4.5-CRUNCEP forcing and CLM5.0-GSWP3 

450 forcing. 

451

452 Figure 6. Heterotrophic respiration (RH) seasonal pattern (averaged by day of year) across tropic, arid, 

453 temperate, mediterranean, boreal, and arctic. Panels from left to right are the comparison between 

454 measured RH (gray) and CASA modeled RH driven with CRUNCEP forcing, CASA modeled RH driven 

455 with GSWP3 forcing, CORPSE modeled RH driven with GSWP3 forcing, and MIMICS modeled RH 

456 driven with GSWP3 forcing. The temporal trend of RH simulated by CORPSE and MIMICS driven by 

457 CRUNCEP forcing were almost identical to RH simulated driven by GSWP3, therefore the results were 

458 not shown. Note that only measurements from the northern hemisphere were used. R2 and RMSE are 

459 from the linear regression between measured RH and model predicted RH.

460
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